Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS.

نویسندگان

  • Feng Ma
  • Bing Li
  • Su-yang Liu
  • Shankar S Iyer
  • Yongxin Yu
  • Aiping Wu
  • Genhong Cheng
چکیده

Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway

Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs), which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN) gene induction and prote...

متن کامل

cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells.

Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic ...

متن کامل

Type I Interferon Induction by Neisseria gonorrhoeae: Dual Requirement of Cyclic GMP-AMP Synthase and Toll-like Receptor 4.

The innate immune system is the first line of defense against Neisseria gonorrhoeae (GC). Exposure of cells to GC lipooligosaccharides induces a strong immune response, leading to type I interferon (IFN) production via TLR4/MD-2. In addition to living freely in the extracellular space, GC can invade the cytoplasm to evade detection and elimination. Double-stranded DNA introduced into the cytoso...

متن کامل

Tissue-specific positive feedback requirements for production of type I interferon following virus infection.

Type I interferon (IFN) is synthesized by most nucleated cells following viral infection. Robust IFN production in cell culture requires positive feedback expression of inducible signaling components, such as the transcription factor IRF7. However, the role of positive feedback and IRF7 in vivo may be more complex. We found that IFN produced locally in the respiratory tract of influenza virus-i...

متن کامل

Interferons I-01 NOVEL MECHANISM OF ACTION OF ANTI-MALARIAL DRUGS IN THE INHIBITION OF TYPE I INTERFERON PRODUCTION

Background Anti-malarial drugs (AMD) such as Hydroxychloroquine (HCQ) and Quinacrine (QC) are effective in the treatment of skin rash and arthritis in systemic lupus erythematosus (SLE). However, which mechanism(s) are responsible for their beneficial action is uncertain. Type I interferon, (IFN-I) is strongly implicated in the pathogenesis of SLE and ‘interferonopathies’ such as Aicardi-Goutie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 194 4  شماره 

صفحات  -

تاریخ انتشار 2015